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Abstract

Motivated by another paper on the topic [1], a modified truncated
conical resistor problem for introductory physics is proposed to over-
come the shortcomings and deficiencies in the calculation of the resis-
tance of the standard truncated conical resistor. The geometry of the
new shape allows the Riemann sum method of introductory physics
to give its exact resistance. However, the proposed resistor has addi-
tional benefits: It allows the straightforward application of at least two
important mathematical techniques to electricity for instructors who
want to link directly a higher-level course to introductory physics. In
particular, conformal mapping can also be used to compute its resis-
tance. Alternatively, using boundary conditions for the behavior of the
current on the faces of the modified resistor, one can solve the bound-
ary value problem for the potential and, hence, derive the resistance
of the resistor this way.

1 Introduction & Motivation

A good fraction of physics textbooks used for the introductory physics se-
quence course include the truncated conical resistor as an end-of-chapter
problem1. In a paper [1] written by Romano and Price, the authors have
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1Over time, the trends have changed slightly. To the best of our recollection, the conical

resistor used to be a standard problem in most texts. These days, some texts include it,
and some do not. Among the texts that we have handy, the ones that include the conical
resistor are given in Ref. [4], while the ones that do not are given in Ref. [5]. Particularly,
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questioned the applicability of elementary methods to the truncated cone
resistor. They have explicitly discussed the hidden issues behind the antici-
pated method of calculation. Of course, their concern should not be unique
to the truncated cone resistor. The introductory physics textbooks are full of
problems whose expected solutions, when dissected carefully, are plagued by
serious, inherent deficiencies and subtleties. If accuracy is demanded, then
most objects in the introductory electricity and magnetism course should be
abandoned. However, in that case, we would not have simple calculations for
parallel plate capacitors, cylindrical capacitors, solenoids, toroids, and many
other objects for which are used as tools to teach students the fundamental
ideas. Hence, avoiding all of the problems which have conceptual deficiencies
at a deeper level is not a reasonable or even practical position for the intro-
ductory course. Instead, behind any calculation in introductory physics, the
prevailing attitude should be: Assume all necessary conditions that ensure
the applicability of the simple method as a good approximation, then per-
form the calculation. To avoid repetition during the introductory course,
the first part of the previous statement is typically omitted and tacitly as-
sumed. This might be confusing to the students but it is fully understood
by the instructors.
We wanted to remind our reader of this simple guiding rule for introductory
physics—and, in fact, for all academic courses where we pass structured
information to students. Nonetheless, we will ignore it from now on since
our article is not an attack against the authors’ motivation for the writing
of article [1]. Instead, we will agree with the authors that, to reduce the
confusion that may occur to some students who realize any of the subtleties
that exist in the models we use in introductory physics, we should search to
construct simple models whose solutions by elementary methods are exact.
Unfortunately, it is easier to say this than to execute it. In most cases, such
constructions are really hard. However, in this paper, we do two things.
First, we address the conical resistor introduced by Romano and Price in
article [1], and provide a derivation for its resistance which was omitted by
the authors. Then, we present a modification of the truncated cone resistor
that can be solved easily by elementary methods in introductory physics.
Furthermore, at the same time, it can be solved easily by advanced methods
in more advanced courses to demonstrate other mathematical techniques in
electricity.

notice how some texts by the same authors in our references have dropped the resistor in
newer editions.
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2 About the truncated cone resistor

In the chapter2 where electric current and ohmic materials are introduced,
introductory physics texts [4, 5] derive the formula for the electric resistance
R encountered by a uniform current running along the axis of a uniform
cylindrical wire made of a material with resistivity ρ. That formula is

R = ρ
`

A
. (1)

In this formula, ` is the length of the wire, and A is its cross-sectional
area. Incidentally, note that the cylinder does not have to be a circular
cylinder: the cross-section may be of any shape. In deriving this formula in
an introductory physics course, the assumption of uniformity is assumed to
be straightforward and never discussed thoroughly. Work has been done to
study the distribution of the surface charges on the wire needed to produce
a uniform field inside the wire [6]. Although the study of surface charges
gives an insight into the physics of what is happening inside the wire, it is
beyond the scope of our interest. We are interested solely in the calculation
of resistance!
Needless to say, a major part of the students’ experiences in an introduc-
tory physics course is to understand how the formulæ derived under uni-
form conditions can be used when non-uniformities arise. To demonstrate
to students how formula (1) can be applied to non-uniform resistors when
the non-uniformity arises from their geometry, many texts [4] include as an
end-of-chapter problem the truncated conical resistor (seen in Figure 1).

a
b

`

Figure 1: A resistor in the form of a truncated cone.

The expected method for the solution is slicing the resistor into coin-like
infinitesimal resistors connected in series, and then calculate the total resis-
tance by adding the infinitesimal resistance of all such infinitesimal resistors.
This method of addition of electrical resistances (as well as other quanti-
ties) has been discussed extensively in the articles [2, 3]. The interested

2This chapter is usually entitled electric current or something similar.
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reader should consult them for obtaining a more rounded understanding of
the technique.

a
b

`

slice

Figure 2: The slicing of the truncated cone to infinitesimal resistors.

Once the method has been applied, the resistance of the truncated cone is
found to be

R = ρ
`

π a b
, (2)

where ` is the height of the truncated cone and a, b the radii of the bases.
Result (2) appears to be reasonable. It reduces to that of a uniform cylinder
if a = b. However, as has already been mentioned, the expected method of
solution is plagued by deficiencies. Although a requirement for the calcu-
lation, the planar surfaces that define the infinitesimal resistors cannot be
truly equipotential surfaces. Starting from this point and discussing the im-
plications, Romano and Price (a) attempt to correct the result by providing a
numerical solution and (b) suggest a model in which the result (2) is correct.
In particular, they suggest that for a resistor made of an electrical biresis-
tive3 material with resistivity ρl = ρ along the axis and resistivity ρt = 0
transversely to the axis, the result (2) is indeed correct. Biresistivity is not a
bad idea given the ingenuity of the materials created by material scientists.
After all, we can imagine the conical resistor made of graphite which consists
of a stack of sheets; current in graphite flows very easily within each sheet,
but it is much harder to flow from sheet to sheet.
In this paper, we will follow a different approach. We will ask the question as
follows. In particular: Can we create a modified truncated cone for which the
expected solution method of introductory physics provides the correct result?
And the result should not be correct by accident but because the method
is fundamentally correct. The answer to this question is affirmative. Here
is the new resistor: Starting with a solid cylinder of radius r2, we remove a

3To the best of our knowledge, this is not an existing term. We made it up in analogy
to optical birefringent materials.
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coaxial cylinder of radius r1, where r1 < r2. We then cut our wedge out of
this cylinder by slicing along two of its radii. The resulting shape is shown
in Figure 3, and we will call it the truncated wedge.

y

x

z

r
θ

Figure 3: A resistor in the form of a truncated wedge (cut from a hollow circular
cylinder). The figure also shows the various coordinates we use for its description. Besides
the Cartesian coordinates x, y, z, since, mathematically, the resistor is a right cylinder,
cylindrical coordinates r, θ, z are a natural choice. The bases of the cylinder are curved
trapezoids at z = 0 and z = a. The parallel sides of the trapezoids are the curved ones
given by r = r1 and r = r2 (with 0 ≤ θ ≤ θ0). The resistor can be seen as a stack of
layers (trapezoids). When the physics is identical in each layer (i.e. there is translational
symmetry along the z-directions), the problem is effectively 2-dimensional on the xy-plane.
In this case, complex analysis becomes a powerful tool. We will indicate by ζ the complex
coordinate of the complex xy-plane: ζ = x+ i y = r(cos θ + i sin θ) = r eiθ.

A resistor in the form of a truncated wedge can be given as an easy appli-
cation of formula (1) in introductory physics. At the same time, as we will
discuss, the geometry of the resistor manages to overcome all deficiencies in
the original conical resistor.

3 Conical resistor truncated by spherical shells

In this section, we will address the conical resistor introduced by Romano
and Price in paper [1]. Moreover, since the authors omitted the derivation
of the resistance of the conical resistors we will provide the reader with a
two methods of deriving its resistance. First, we use the method of adding
infinitesimal resistors thought in introductory physics courses. Following
that, we apply the techniques form advanced electromagnetism and solve
the Laplace equation in spherical coordinates to compute the resistance of
a cone using the boundary conditions. This solution can be used as an ex-
ample in a Mathematical Methods course where Fourier analysis and special
functions are introduced or in the advanced Electromagnetism course where
boundary value problems are routinely solved.

We ask the reader to note that both methods yield the same solution, which
was also provided as the result in paper [1].
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3.1 Introductory physics method: adding infinitesimal resis-
tors

To construct the same resistor as described in paper [1], we start with the
cone. Then, we truncate it using two spheres of radii R̃ and R̃+ L̃ as shown
in Figure 4. We are left with the conical resistor portrayed in Figure 5.

R̃
+
L̃

Figure 4: Truncating the cone
with spherical shells of radii R̃ and
R̃+ L̃

L̃

Figure 5: The leftover truncated
cone

Here is the look at the cross-section of our conical resistor.

R̃

L̃

b

a

b− a

L

α

Figure 6: The cross-section of the
cone

a
R̃

L̃

b

b− a

L

α

Figure 7: Equilateral triangle (half
of the cross-section of the cone)

3.1.1 Useful identities

L̃ =
√
L2 + (b− a)2 =

b− a
sin(α)

(3)

R̃ =
a

sin(α)
(4)

R̃+ L̃ =
b

sin(α)
(5)
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sin(α) =
b− a
L̃

=
b− a√

L2 + (b− a)2
(6)

cos(α) =
L

L̃
=

L√
L2 + (b− a)2

(7)

tan(α) =
b− a
L

(8)

1− cos(α) = 1− L√
L2 + (b− a)2

=

√
L2 + (b− a)2 − L√
L2 + (b− a)2

=
L̃− L
L̃

(9)

3.1.2 Deriving the area of the spherical cap

We split the conical resistor into an infinitesimal resistors along the radial
direction r. The corresponding cross-sectional area of a spherical cap across
the angle α and at a radial distance r is calculated using the spherical coor-
dinates in the following manner.

S(r) = r2

∫ 2π

0
dφ

∫ α

0
dθ sin(θ)

= 2πr2(1− cos(α))

= 2πr2

√
L2 + (b− a)2 − L√
L2 + (b− a)2

= 2πr2 L̃− L
L̃

(10)

3.1.3 Deriving the resistance of the truncated cone

Using the area of the spherical cap that we found in Equation (10), we
can now derive the resistance of the cone truncated by spherical shells. We
approach the problem by summing up the resistance of all of the infinitesimal

pieces. Formula for the resistance of the infinitesimal piece is dR = ρ
dr

S(r)
.
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R =

∫
dR

=
ρ

2π
L̃− L
L̃

∫ R̃+L̃

R̃

dr

r2

=
ρ

2π

L̃

L̃− L

(
1

R̃
− 1

R̃+ L̃

)
=

ρ

2π

L̃

L̃− L

(
L̃

R̃(R̃+ L̃)

)

=
ρ

2π

L̃2

L̃− L

(
1

R̃(R̃+ L̃)

)
Now, using identities from Equations (3), (4), and (5) we obtain the follow-
ing.

R =
ρ

2π

L̃2

L̃− L
sin(α)

a

sin(α)

b

=
ρ

2πab

(
L̃ sin(α)

)2

L̃− L

=
ρ

2πab

(b− a)2√
L2 + (b− a)2 − L

(11)
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3.2 Advanced electromagnetism: boundary value problem in
spherical harmonics

Figure 8 below, gives us another look at the geometry of the conical resistor.
However, this time we present it in spherical coordinates.

Figure 8: Conical resistor

From Figure 8, we see that:

• ~E ‖ ~er =
~r

r

• ~E = ∂Φ
∂r ~er

• Top equipotential surface: Φ = 1
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• Bottom equipotential surface: Φ = 0

Since we will solve this problem using spherical coordinates, we have that

Φ = Φ(r, θ, φ) and ∇2Φ = 0.

The two curved sides of the truncated cone are equipotential surfaces so
boundary conditions are as follows:

Φ(R̃, θ, φ) = 0 (BC 1)

Φ(R̃+ L̃, θ, φ) = 1 (BC 2)

∂Φ

∂θ
= 0 for all θ (0 ≤ θ ≤ π) (BC 3)

Equation (BC 3) is telling us that current does not flow parallel to
~eθ.
Since ∇2Φ = 0 should be satisfied for the electric potential inside the conical
resistor, we will solve it in spherical coordinates.

∇2Φ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

r2 sin2(θ)

∂2

∂φ2

For convenience, we can write ∇2Φ as

∇2Φ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
− 1

r2
~̂L2

where

~̂L2 = − 1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
− 1

sin2(θ)

∂2

∂φ2
.

~̂L is the angular momentum operator from quantum mechanics
and ~̂L2 = ~̂L · ~̂L.
The eigenvalue problem of ~̂L2 is well known:

~̂L2 Y`m(θ, φ) = `(`+ 1)Y`m(θ, φ). (12)

Here,

` = 0, 1, 2, 3... , m = 0,±1,±2,±3...± ` , and Y`m(θ, φ)

are spherical harmonics, where

Y`m(θ, φ) = C`me
imφ Pm` (cos(θ)) . (13)
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Pm` (x) =
(
1− x2

) |m|
2

d|m|

dx|m|
P`(x), (14)

P`(x) =
(−1)`

2``!

d`

dx`
(
1− x2

)`
.

Also,
x = cos(θ)

and

C`m = (−1)m

√
2`+ 1

4π

(`− |m|)!
(`+ |m|)!

. (15)

Here, Pm` (x) are associated Legendre polynomials and P`(x) are
Legendre polynomials. Furthermore, `-coefficients are integers be-
cause L2(S

2) is a separable space.
The eigenvalue problem from Equation (12) allows us to solve ∇2Φ(r, θ, φ) =
0 with

Φ(r, θ, φ) = R(r)Y`m(θ, φ).

Thus, we obtain the following.

1

r2

d

dr

[
r2 d

dr
(R(r)Y`m(θ, φ))

]
− 1

r2
~̂L2 (R(r)Y`m(θ, φ)) = 0,

and so
Y`m(θ, φ)

r2

d

dr

(
r2 dR(r)

dr

)
=
R(r)

r2
~̂L2 Y`m(θ, φ)

since ~̂L2 contains only derivatives of θ and φ.
Using Equation (12) we get

Y`m(θ, φ)

r2

d

dr

(
r2 dR(r)

dr

)
=
R(r)

r2
`(`+ 1) Y`m(θ, φ).

Furthermore, dividing both sides by RY we obtain

1

R

1

r2

d

dr

(
r2 dR(r)

dr

)
=

1

r2
`(`+ 1).

Since we do not consider a case in which r = 0, we can multiply by r2 to get

d

dr

(
r2 dR(r)

dr

)
= `(`+ 1)R. (16)

There are two solutions of Equation (16):

R1(r) = r` and R2(r) =
1

r`+1
= r−(`+1)
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To see that, we compute the following.

dR1

dr
= `r`−1

r2 dR1

dr
= `r`+1

d

dr

(
r2 dR1

dr

)
= `(`+ 1)r`

= `(`+ 1)R1(r)

dR2

dr
= −(`+ 1)r−`−2

r2 dR2

dr
= −(`+ 1)r−`

d

dr

(
r2 dR2

dr

)
= `(`+ 1)r−(`+1)

= `(`+ 1)R2(r)

Therefore, the general solution of Equation (16) is

R(r) = A`r
` +

B`
r`+1

≡ R`(r). (17)

So,

Φ(r, θ, φ) =

∞∑
`=0

∑̀
m=−`

R`(r)Y`m(θ, φ)D`m

where D`m are constants that we need to determine.

3.2.1 Applying boundary conditions

Now, we use boundary conditions. We have the following.

Φ(r, θ, φ) =
∞∑
`=0

∑̀
m=−`

D`mR`(r)Y`m(θ, φ)

Φ(R̃, θ, φ) =

∞∑
`=0

∑̀
m=−`

D`mR`(R̃)Y`m(θ, φ) = 0 (BC 1)

Φ(R̃+ L̃, θ, φ) =
∞∑
`=0

∑̀
m=−`

D`mR`(R̃+ L̃)Y`m(θ, φ) = 1 (BC 2)

Then, we set
D`mR`(R̃) ≡ D(1)

`m

and
D`mR`(R̃+ L̃) ≡ D(2)

`m.

Now, we can write the following expressions.
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0 =
∞∑
`=0

∑̀
m=−`

D
(1)
`m Y`m(θ, φ) (18)

1 =
∞∑
`=0

∑̀
m=−`

D
(2)
`m Y`m(θ, φ) (19)

For every function f : S2 → R, where S2 is the sphere, we have a Fourier
expansion in spherical harmonics. So,

f(θ, φ) =

∞∑
`=0

∑̀
m=−`

C`mY`m(θ, φ),

where

C`m = 〈Y`m, f〉 =

∫ 2π

0
dφ

∫ π

0
dθ sin(θ) Y ∗`m(θ, φ) f(θ, φ).

Also,

〈Y`m, Y`′m′〉 =

∫ 2π

0
dφ

∫ π

0
dθ sin(θ) Y ∗`m(θ, φ) Y`′m′(θ, φ)

= δ`,`′δm,m′ .

Recalling Equations (13), (14), and (15), we deduce that

Y00(θ, φ) = C00 =

√
1

4π
. (20)

Using the obtained Equation (20), we may rewrite Equation (19) as

√
4π · Y00 =

∞∑
`=0

∑̀
m=−`

D
(2)
`m Y`m(θ, φ)

so
D

(2)
`m =

〈
Y`m,

√
4πY00

〉
=
√

4π · δ`,0δm,0.

Therefore,

D
(2)
`m =

{√
4π, when ` = m = 0

0, otherwise
. (21)

Since D(2)
`m = D`mR`(R̃+ L̃), we find that

D00 ·
(
A0 · (R̃+ L̃)0 +

B0

(R̃+ L̃)0+1

)
=

{√
4π, when ` = m = 0

0, otherwise
.
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Thus,

D00 ·
(
A0 +

B0

(R̃+ L̃)

)
=
√

4π.

Since Y`m are basis of L2(S2), they are linearly independent. Therefore,
Equation (18) implies that D(1)

`m = 0 for all ` and m.
Hence,

D`mR`(R̃) = 0. (22)

However, from Equation (21) we have that D00 6= 0 and D`m = 0 for ` 6= 0
and m 6= 0. Thus, Equation (22) yields the following.

D00R0(R̃) = 0

D00

(
A0 +

B0

R̃

)
= 0

Therefore, we have

D00

(
A0 +

B0

R̃+ L̃

)
=
√

4π

and
D00

(
A0 +

B0

R̃

)
= 0.

The solutions are
D00 =

√
4π (23)

A0 =
R̃+ L̃

L̃
(24)

B0 = −R̃(R̃+ L̃)

L̃
(25)

so that A0 +
B0

R̃+ L̃
= 1 and A0 +

B0

R̃
= 0.

Now, from Equation (21) we find that

D
(2)
`m = D`mR`(R̃+ L̃) =

{√
4π, when ` = m = 0

0, otherwise
,

or

D`m =

{√
4π, when ` = m = 0

0, otherwise
(26)

because R0(R̃+ L̃) = A0 +
B0

R̃+ L̃
= 1.
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3.2.2 Calculating resistance

Substituting expressions of constants for Φ, we have

Φ(r, θ, φ) =

∞∑
`=0

∑̀
m=−`

D`mR`(r)Y`m(θ, φ)

= D00 ·R0(r) · Y00(θ, φ)

=
√

4π ·
(
A0 +

B0

r

)
· 1√

4π

= A0 +
B0

r

=
R̃+ L̃

L̃
− 1

r
· R̃(R̃+ L̃)

L̃
. (27)

Here, expression for D00 was obtained from Equation (23), for R0(r) from
Equation (17), and for Y00(θ, φ) from Equation (20). Furthermore, expres-
sions for A0 and B0 were obtained from Equations (24) and (25) respectively.

Now, using Equation (27) we can calculate the electric field ~E.

~E = −∇Φ

= −∂Φ

∂r
~er

=
1

r2
· R̃(R̃+ L̃)

L̃
~er (28)

Moreover, the current density inside the resistor ~j is

~j =
1

ρ
~E

=
1

r2
· R̃(R̃+ L̃)

ρL̃
~er. (29)

The current I, at r = R̃+ L̃ is

I =

∫
~ds ·~j

∣∣∣
|~r|=R̃+L̃

where ~ds = r2 sin(θ) dθ dφ~er.

So,

I =

∫ 2π

0
dφ

∫ α

0
dθ sin(θ) r2 1

r2
· R̃(R̃+ L̃)

ρL̃
~er · ~er

=
2π

ρ
· R̃(R̃+ L̃)

L̃
(1− cos(α)). (30)
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We know that
V = Φ(R̃+ L̃) = 1, (BC 2)

and so,

I =
V

R
=

1

R
.

Hence,

R =
1

I

=
ρ

2π
· L̃
R̃
· 1

R̃+ L̃
· 1

(1− cos(α))
. (31)

Substituting identity from Equation (9) into Equation (31) we get

R =
ρ

2π
· L̃
R̃
· 1

R̃+ L̃
· L̃

L̃− L

=
ρ

2π
· L̃

2

R̃
· 1

R̃+ L̃
· 1

L̃− L
. (32)

Continuing with substitutions of identities form Equations (3), (4), and (5)
into Equation (32), we obtain that

R =
ρ

2π
· (b− a)2

sin2(α)
· sin(α)

a
· sin(α)

b
· 1√

L2 + (b− a)2 − L
.

Therefore, we can finally obtain the expression for the resistance of the con-
ical resistor.

R =
ρ

2πab

(b− a)2√
L2 + (b− a)2 − L

(33)

The result obtained in Equation (33) is identical to the result obtained in
Equation (11)!

4 The resistance of the truncated wedge

In this section, we will work out the solution of the truncated wedge resistor
using three different methods. The first method is the standard method of
slicing the resistor into infinitesimal resistors as expected by students in the
introductory physics course.
The second method uses conformal mapping. Complex analysis is a valuable
tool for theoretical physics, with conformal mapping being one of the most
important techniques within it. The method of conformal mapping and how
to apply it in electrostatics situations is explained in numerous texts. (For
example, see [7]). This solution is ideal to be presented in a Mathematical
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Methods course for physicists. In such a course, it is traditional to teach a fast
overview of complex analysis with various applications. Often applications to
electrostatics are omitted. However, this problem can rectify this omission.
The required mapping is a basic one and hence there is no need for an
extensive discussion of additional concepts and constructions.
The third method uses a boundary value problem to compute the form of
the potential inside the resistor. Relying on partial differential equations and
being a universal method for solving problems in physics, boundary value
problems are taught and used almost in all advanced courses of physics.
In particular, they are used in any advanced electromagnetism course for
undergraduate [8] and graduate students [9]. Hence, this solution can be
used as an example in a Mathematical Methods course where Fourier analysis
and special functions are introduced or in the advanced Electromagnetism
course where boundary value problems are routinely solved.
An important comment is that all methods give the same result. Hence, for
the intuitive physicist, no method has a preferred advantage over the other.
Which solution is preferred is ultimately a matter of taste or a choice about
the tool and concept to be taught. However, for the strict and more for-
mal physicist—a mathematician’s sibling—the last method is more precise.
The first two solutions make use of explicit assumptions for the flow of the
current. In the third solution, there is no assumption. The result follows
naturally through computation. Perhaps, this is another benefit of this re-
sistor: Make students appreciate a physicist’s solution that uses shortcuts
based on learned physical behavior compared to a mathematician’s solution
which requires no shortcut.
Before we move to the solutions, we introduce our notation. Figure 3 shows
the coordinates used in the solutions: the Cartesian coordinates x, y, z; the
cylindrical coordinates r, θ, z; and the complex variable ζ = x + iy = r eiθ

on the xy-plane when the latter is seen as a complex plane.

4.1 Introductory physics: adding infinitesimal resistors

The method of splitting a non-uniform object into infinitesimal slices is one
of the most powerful ideas in the history of science. It is used consistently
at any level of work with increasing sophistication. For this reason, it is
required that any student masters the technique as early as possible. The
reader is encouraged to read References [2, 3] where the technique is ex-
plained and applied to many similar situations so the reader can obtain a
solid understanding.
We split the truncated wedge into an infinitesimal resistors along the radial
direction r. A representative infinitesimal resistor at a radial distance r is
seen in Figure 9.
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r1
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a

θ0

Figure 9: The truncated wedge split in infinitesimal resistors.

The length run by the current in the infinitesimal resistor is dr. The cor-
responding cross-sectional area is A = sa, with s = r θ0. The infinitesimal
resistor is uniform and has a cylindrical shape. Hence, from equation (1), its
infinitesimal resistance is

dR = ρ
dr

A
= ρ

dr

aθ0r
.

One of the subtleties of the original truncated cone is that the infinitesimal
resistors are not in series and, hence, their resistances should not be added.
However, in the truncated wedge case, the circular faces of the entire resis-
tor, as well as the faces of the infinitesimal resistors are equipotential since
they are perpendicular to the flow of the current. Since the infinitesimal
resistors are connected in series, the resistance of the resistor is the sum of
the infinitesimal resistances:

R =

∫
dR =

ρ

a θ0

∫ r2

r1

dr

r
=

ρ

a θ0
ln
r2

r1
. (34)

4.2 Mathematical methods: conformal mapping

When a problem has translational symmetry, it is effectively a 2-dimensional
problem, and a vast array of tools can be used. In particular, complex anal-
ysis provides some of the most powerful techniques for theoretical physics.
Among them, the conformal mapping of a domain to another domain can
be used to transform a hard problem into a simpler one. In particular, the
logarithmic map from the complex ζ-plane to the w-plane,

w = ln ζ

is of interest to us since it maps an annulus to a rectangle.
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w-plane
ζ-plane

Figure 10: Conformal mapping of the planes using the exponential/logarithmic function.
The points ζ = r eiθ, θ ∈ R of a circle of radius r on the ζ-plane map to the line u = ln r
of the w-plane. In particular, if θ takes values in the interval [0, 2π), then the circle maps
to the segment with v ∈ [0, 2π). Therefore, a truncated angular sector of angle θ0 and
radii r1 and r2 maps to the rectangle defined by the lines u1 = ln r1, u2 = ln r2, v1 = 0,
v2 = θ0.

If ζ = reiθ and w = u+ iv, then

u = ln r, v = θ.

Notice that an annulus with radii r1 and r2, 0 ≤ θ < 2π, maps to the strip on
the w-plane confined by u1 = ln r1 and u2 = ln r2. Besides, if we constrain
θ to the values in the interval [0, θ0], that is, if we confine ourselves to a
truncated circular sector on the ζ-plane, then the image is a rectangle from
v = 0 to v = θ0. Here, the equipotential circular curves in the ζ-plane are
mapped to lines parallel to the v axis in the w-plane [?].
We now view the truncated resistor as a series of truncated circular sec-
tors stack on top of each other. We will assume that the current does not
flow from one sector to another. This assumption makes the problem 2-
dimensional. A priori it does not have to be right, but as the derivation
in the next subsection proves, it is actually exact. Incidentally, note that
we did assume this in the first solution two by considering radial flow (on a
plane) in the first solution.
Using conformal mapping, the truncated wedge transforms into a rectangular
prism.

Figure 11: The logarithmic mapping maps the truncated wedge to a uniform rectangular
cylinder.
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As such, its resistance can be computed straightforwardly from formula (1),
with length ` = u2 − u2 and cross sectional area A = (v2 − v1)a:

R = ρ
u2 − u1

a(v2 − v1)
.

Returning to the original variables,

R =
ρ

a θ0
ln
r2

r1
,

which is exactly equation (34).

4.3 Advanced electromagnetism: boundary value problem

A current I in a wire flows due to an electric field ~E = −∇Φ. The relation
between the two quantities is given by what is usually (incorrectly4) called
the microscopic Ohm’s law:

~ =
1

ρ
~E. (35)

The wire is overall neutral; hence, ∇ · ~E = 0 or ∇2Φ = 0. Therefore, this
equation should be satisfied for the electric potential inside the truncated
wedge. Due to the ‘cylindrical symmetry’, we will solve it in cylindrical
coordinates:

1

r

∂

∂r

(
r
∂Φ

∂r

)
+

1

r2

∂2Φ

∂θ2
+
∂2Φ

∂z2
= 0. (36)

By allowing all three coordinates r, φ, z to appear, we make no assumption
for the flow of the current inside the resistor. That is, a priori we allow the
current to flow in any pattern with respect to θ and z. As we will see though,
the boundary conditions will enforce the solution to be z-independent and
θ-independent naturally.
The boundary conditions that we must impose are as follows:

• The two curved sides of the truncated cone are equipotential surfaces:

Φ(r1, θ, z) = 0, Φ(r2, θ, z) = 1.

These are Dirichlet boundary conditions.

• The current cannot flow out of the wire on any of the faces of the
lateral surface. This requires that the current flows parallel to these
faces—it has no component perpendicular to them—when computed
on the lateral surface of the truncated cone. Stated mathematically:

∂Φ(r, θ, 0)

∂z
=
∂Φ(r, θ, a)

∂z
=
∂Φ(r, 0, z)

∂θ
=
∂Φ(r, θ0, z)

∂θ
= 0.

These are Neumann boundary conditions.
4Strictly speaking, Ohm’s law is the statement that in most materials, ρ is constant.

However, (35) and V = IR are known as Ohm’s laws since ρ appears in them, (in the first
equation explicitly and in the second through equation (1)).
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The boundary problem we must solve has mixed (Dirichlet and Neumann)
boundary conditions; such a problem is known as a Robin problem.
The procedure to solve the problem is standard: using the separation of
variables. That is, we search for solutions

Φ(r, θ, z) = R(r)Θ(θ)Z(z), (37)

which satisfy the homogeneous boundary conditions.
Inserting (37) in (36):

1

rR

d
dr

(
r
dR
dr

)
+

1

r2Θ

d2Θ

dθ2
+

1

Z

d2Z

dz2
= 0

or
1

rR

d
dr

(
r
dR
dr

)
+

1

r2Θ

d2Θ

dθ2
= − 1

Z

d2Z

dz2
.

Since the two sides depend on different variables, each must be a constant;
let’s indicate it by λ2. Hence,

d2Z

dz2
+ λ2Z = 0, (38a)

r

R

d
dr

(
r
dR
dr

)
− λ2r2 = − 1

Θ

d2Θ

dθ2
. (38b)

The solution for (38a) is

Z(z) = A cos(λz) +B sin(λz) or Z(z) = A+B z.

Applying the boundary conditions at z = 0 and z = a, we find that

B = 0, λ =
nπ

a
, n = 1, 2, . . .

Notice that the negative values of the integers do not give additional solu-
tions. Hence,

Zn(z) = A cos
(nπz
a

)
, n = 0, 1, 2, . . .

Now, we look at the equation (38b),

r

R

d
dr

(
r
dR
dr

)
− n2π2

a2
r2 = − 1

Θ

d2Θ

dθ2
,

where we have substituted λ by the values we found above. Since the two
sides depend on different variables, each must be a constant; let’s indicate it
by µ2. Hence

r

R

d
dr

(
r
dR
dr

)
− n2π2

a2
r2 = µ2 (39a)

d2Θ

dθ2
+ µ2 Θ = 0. (39b)
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Equation (39b) can be solved quickly:

Θ(θ) = C cos(µθ) +D sin(µθ) or Θ(θ) = C +Dθ.

We can also apply the boundary conditions at θ = 0 and θ = θ0 to find

D = 0, µ =
mπ

θ0
, m = 1, 2, . . .

Again, the negative values of the integers do not give additional solutions.
Hence,

Θ(z) = C cos

(
mπθ

θ0

)
, m = 0, 1, 2, . . .

Finally, equation (39a) is

1

r

d
dr

(
r
dR
dr

)
R = 0, if m = n = 0,

1

r

d
dr

(
r
dR
dr

)
−
(
n2π2

a2
+
m2π2

θ2
0r

2

)
R = 0, if |n|+ |m| 6= 0.

The solution to the former equation is

R(r) = G ln r + F,

while the solution to the latter equation can be written in terms of the
modified Bessel functions5 as follows:

R(r) = GImπ
θ0

(nπr
a

)
+ F Kmπ

θ0

(nπr
a

)
.

Applying the boundary condition at r = r1, we have

G = −F 1

ln r1
, G = −F

Kmπ
θ0

(
nπr1
a

)
Imπ
θ0

(
nπr1
a

) ,
respectively. Therefore, the most general solution before implementing the
last boundary condition is

Φ(r, θ, z) =

∞∑
n=0

∞∑
m=0

Enm cos
(nπz
a

)
cos

(
mπθ

θ0

)
Rnm(r),

where

R00(r) = 1− ln r

ln r1
,

Rnm(r) =

[
Kmπ

θ0

(nπr
a

)
−
Kmπ

θ0

(
nπr1
a

)
Imπ
θ0

(
nπr1
a

) Imπ
θ0

(nπr
a

)]
, |n|+ |m| 6= 0,

5When the index of the Bessel functions is not an integer, it is more precise to call
them cylinder functions.
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and Enm are some constants. We can now impose the second Dirichlet
boundary condition at r = r2:

∞∑
n=0

∞∑
m=0

Ẽnm cos
(nπz
a

)
cos

(
mπθ

θ0

)
= 1, (40)

where we have set

Ẽ00 = E00

(
1− ln r2

ln r1

)
,

Ẽnm = Enm

[
Kmπ

θ0

(nπr2

a

)
−
Kmπ

θ0

(
nπr1
a

)
Imπ
θ0

(
nπr1
a

) Imπ
θ0

(nπr2

a

)]
, |n|+ |m| 6= 0.

Equation (40) is a double Fourier series with Fourier coefficients Ẽnm. The
latter can be computed by

Ẽnm =

(
2

a

∫ a

0
cos
(nπz
a

)
dz

) (
2

θ0

∫ θ0

0
cos

(
mπθ

θ0

)
dθ

)
= 0, if |n|+ |m| 6= 0.

This implies that Enm = 0 unless n = m = 0. Then Ẽ00 = 1 which gives

E00 =
ln r1

ln r1
r2

.

The solution for the potential is thus

Φ(r, φ, z) =
ln r

r1

ln r2
r1

.

From this, the magnitude of the current density is found to be

j(r) =
1

ρ r ln r2
r1

.

Notice that, for any fixed r, this density is uniform—it has the same value
over the cross-sectional area of the resistor. Of course, this statement is
nothing new given all the comments which have been made up to now. At
r = r1, the current density is j = 1

ρ r1 ln
r2
r1

. Hence,

I = j s1a =
aθ0

ρ ln r2
r1

,

and, from the macroscopic Ohm’s law, R = V/I,

R =
ρ

a θ0
ln
r2

r1
.

Once more, the result we found previously.
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5 Discussion and Conclusion

Using three different methods from introductory physics, complex analysis
and the boundary value problem, we calculated the resistance of a modified
conical wedge Figure 3. All three methods used gave the same form of total
resistance. We believe the final solution we get is exact and in the form:

R =
ρ

a θ0
ln
r2

r1
.

Notice here that if θ0 = 2π, then the resistance will be R = ρ
2πa ln r2

r1
, which

is a well-known result of the resistance of a hollow cylinder. This shows that
the shape we are introducing in this paper is actually a cut from a cylinder
with some angle θ0, inner and outer radii r1, r2.
We introduced this shape to overcome inaccuracies faced in the calculation
of the conical resistance using the Riemann sum method. In principle, the
result obtained using the introductory physics method does not have to be
exact since it assumes that the infinitesimal slabs connected in series are
equipotential surfaces. This does not have to be the case! However, in this
modified problem, the plausible choice of the equipotential surfaces allows
for the use of the Riemann sum of slabs causing no trouble with the physics
behind. This argument suggests that the modified conical problem we are
introducing is better to be used in introductory physics books instead of the
regular cone problem. Moreover, further study should be done to find the
exact resistance of the regular conical shape.
Hence, introductory physics texts should use the truncated wedge as a train-
ing problem for students. Not only it can be solved easily by the elementary
method of the Riemann integral, but the result is exact. It can be used to
introduce students to symmetries, to show them the relation between the
flow of the current and equipotential lines, and to demonstrate other ideas
which they learn in the introductory course. Furthermore, they can revisit
the problem in more advanced classes and use it again as a training tool for
conformal mapping and boundary value problems. In this way, they have a
standard to compare and evaluate techniques.
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